Dynamo Language Manual

Contents

10.
11.
12.
13.
14.
15.
16.
17.

18.

A-1.

i 5 LA AR

JIRGE- 2 FoipA

SR LA AR

i) & (Vector) £

i (Range) FKiA 3

£S5

2. AN R HE 2 AN) i 25
3, fiek, M Al AR

SR AIAT /R E R s

A

Replication Guides

LG ERMERIRES

P T - A7 N R, A, TR, T e R
JUT RS 4

FHAZ FI BT]

JUAI AT ZRIB 5

i 1F 1: Python Point Generators

Introduction

Wi

RETE S I A 7RIS,
EEIEZEMTT . B Xl
b , Dynamoij—ﬁ%g (4
DesignScript) [RELYE AV SV s an =)
o WHINN, HHRABIHERR
PERY, Dynamolsl [SZHFIIT: K
MIF BN ERE S ORI
WA IR AR 52 ik
R R ZIE A

AP ZEHA SR 25 1A D B SR
JURPRITR A 58 93 FE /R iX A~ 58
AR AR 220 A E Y
PP B R At AT R 48 K [40
BUAHRE T . A E TR,
Y, B T AEJCRTE T AR BN
AT AR AT

R AAEConsolas 4 BL Y SCARBR

AT DARSERG G EACAGER T 55 o

B A Fy HH R B R 2 —

Watch 17 i, LAMEG 2T A9 25

ﬁgE@%@ﬁEﬁﬁﬁﬁE%
T o

Programming languages are created to express ideas, usually
involving logic and calculation. In addition to these objectives, the
Dynamo textual language (formerly DesignScript) has been
created to express design intentions. It is generally recognized
that computational designing is exploratory, and Dynamo tries to
support this: we hope you find the language flexible and fast
enough to take a design from concept, through design iterations,
to your final form.

This manual is structured to give a user with no knowledge of
either programming or architectural geometry full exposure to a
variety of topics in these two intersecting disciplines. Individuals
with more experienced backgrounds should jump to the individual
sections which are relevant to their interests and problem
domain. Each section is self-contained, and doesn’t require any
knowledge besides the information presented in prior sections.

Text blocks inset in the Consolas font should be pasted into a
Code Block node. The output of the Code Block should be
connected into a Watch node to see the intended result. Images
are included in the left margin illustrating the correct output of
your program.

1: Language Basics e

ARSCHIA Dynamo UG R T = ,H@ﬁﬁ This document discusses the Dynamo textual programming
I‘j‘]ﬁEﬁ/‘]DYna@?ﬁfﬁﬁ (A HRFR language, used inside of the Dynamo editor (sometimes referred
Zy DPnYnamof/ TH) jjﬂ\}FDYnamo to as “Dynamo Sandbox”). To create a new Dynamo script, open
”E%ﬁ’ ,,E FILEE *%ﬁi the Dynamo editor, and select the “New” button in the “FILES”
B “New” %41, #HriE—1 Dynamoﬂfl] i

A group:

B Dynamo

FILES

= F=] s
7 Open Visit

KT H B DynamoE#5 s B This will open a blank Dynamo graph. To write a Dynamo text

%@EL?@{E%t&ﬁ%%ED@aﬁoi script, double click anywhere in the canvas. This will bring up a
ARBHA . XA SATIE BB T

. “Code Block” node. In order to easily see the results of our
Ro AT B AR B A H 2 :
o TN > Lo ts, attach a “Watch” node to the output of your Code Block
S P AN 1= scripts,

Eﬁg;ﬁ%;ﬁﬁﬁlﬁﬁﬁﬁﬁn FWatch™ e as shown here:
Code Block
— = . -3 =

O

T ARHE — R B S. H

—deiy S AN LR, 53 5h—LbfE o _ .

VOB AR, B ARSI, s Every script is a series of written commands. Some of these

AT . — AR EE 7, —47 commands create geometry; others solve mathematical

T4 “Lessismore” WITIF, & problems, write text files, or generate text strings. A simple, one

HEERAGIXFE line program which generates the quote “Less is more.” looks like
this:

> > "Less is more.";

Less is more.

ZEM T Watch 79 5 /R LA S H The Watch node on the left shows the output of the script.

AR R RIS . Dynamo
AR PSS (1) T2 E
HIFAFAER, AR Sg. Ak

ABRTARFERH, — MU S

A= BB 54207 EEARAGIXFF «

> >

5420.000

Dynamo F & LA 545K . WIERA
&, RIS AEE . FINTER
i, BOPAIPAFALE (SR fIZRAF e
FHEZTTR) , e ZRBYITERTT
él’%ﬁ% AR B 5 56— R P —

= >

Less is more.

LR, AETAENH T B m AU Y
AR, ANVE RN H E R Ry BE
Ho

TR — R TS AT TR
fEDynamo ™!, EAATIERAAS LIBURE
507 JEke IR 1 R AT IS
HIFrAEE, BEEIFZERF (% THIZE
) o ZATERGEUMMTES (/) JF
%, BAESRHT (v) 45

The command generates a new String object. Strings in Dynamo
are designated by two quotation marks ("), and the enclosed
characters, including spaces, are passed out of the node. Code
Block nodes are not limited to generating Strings. A Code Block
node to generate the number 5420 looks like this:

5420;

Every command in Dynamo is terminated by a semicolon. If you
do not include one, the Editor will add one for you. Also note that
the number and combination of spaces, tabs, and carriage
returns, called white space, between the elements of a command
do not matter. This program produces the exact same output as
the first program:

"Less Is More."

Naturally, the use of white space should be used to help improve
the readability of your code, both for yourself and future readers.

Comments are another tool to help improve the readability of
your code. In Dynamo, a single line of code is “commented” with
two forward slashes, //. This makes the node ignore everything
written after the slashes, up to a carriage return (the end of the
line). Comments longer than one line begin with a forward slash
asterisk, /*, and end with an asterisk forward slash, */.

> >

Less is more.

FIHFIARI, AHERSHE 307" 1H,
— IR FRFERE N BREAEA
AR A R AR A A P BB RR NAS Y
PREZEL, el RS B B AT s AT bR
RAGFRTUARG S . TR R H
CHE, BIRAR M FIME—) AL
FLUNSERE FRIHE, (UUEEF

BE. $ral FRIZk. BRAFARTAS
HERFo AR AFINIZ EAE UM

1)) R eMiiE s mddE. o, —4
At R e s — X G2 I e i T AR

H'rotation"o A T8 2> BLIRIHIAEL

5, Py s A A E: R
B RS E IR FR A camelCase (JEEZE
KRG FRIAIE SE R BEg) fd T RilZk
SrEIIE . BN, — DA RSRIA
T ER: °] 65 44 M smallDiskRotation 5K,
small_disk_rotation, X 1 X

Mo Ol HAFEESNE
W, RS NMRES I ERIE. Filan:

= =

Less is more.

S 7 e o WA SR FRF R A, 24
LUR AR, AR n] DA B K
AR AR, BN ARSI SORY
B, BINEAERR Y A L
T =R

/7

This is a single line comment
/* This is a multiple line comment,
which continues for multiple

lines. */
// All of these comments have no effect on
// the execution of the program
//
"Less Is More";

This line prints a quote by Mies van der Rohe

So far the Code Block arguments have been ‘literal’ values,
either a text string or a number. However it is often more useful
for function arguments to be stored in data containers called
variables, which both make code more readable, and eliminate
redundant commands in your code. The names of variables are
up to individual programmers to decide, though each variable
name must be unique, start with a lower or uppercase letter, and
contain only letters, numbers, or underscores, _. Spaces are not
allowed in variable names. Variable names should, though are
not required, to describe the data they contain. For instance, a
variable to keep track of the rotation of an object could be called
rotation. To describe data with multiple words, programmers
typically use two common conventions: separate the words by
capital letters, called camelCase (the successive capital letters
mimic the humps of a camel), or to separate individual words with
underscores. For instance, a variable to describe the rotation of a
small disk might be named smallDiskRotation or

small disk_rotation, depending on the programmer’s stylistic
preference. To create a variable, write its name to the left of an
equal sign, followed by the value you want to assign to it. For
instance:

quote = "Less is more.";

Besides making readily apparent what the role of the text string
is, variables can help reduce the amount of code that needs
updating if data changes in the future. For instance the text of the
following quote only needs to be changed in one place, despite
its appearance three times in the program.

> >

Less is more. Less is more. Less is more.

FERXHE, An— MER I EE =X,
B R AR BRI BT, A
BEAF 47 RERTFAF R A R P
J— S

> >

Less is a bore. Less is a bore. Less is a bor

// My favorite architecture quote

quote = "Less is more.";
" " + quote +

quote + + quote;

Here we are joining a quote by Mies van der Rohe three times,
with spaces between each phrase. Notice the use of the +
operator to ‘concatenate’ the strings and variables together to
form one continuous output.

// My NEW favorite architecture quote

quote = "Less is a bore.";
quote + " " + quote +

+ quote;

2: Geometry Basics jumsa

EDynamoﬁVﬁﬂ»ﬁEEP)

R “Point” SR EIELHY LA SR . Fir
AU AR50 TR A) 3 R AR e
PRBRECRANE, Bk B MR E JUA
\@m%ﬁwoﬁmmwm*,mﬁ
ﬂ%mUﬁ%%@%?%%,u
&L “Point” NI, T HEIE/N HAIE T
%o i HByCoordinatest4)id PR ACK A1
Eﬁ ;TEI/TEX\ Vs AB R IR AR

fEDynamo ™1, Fa it pR AGH B

B “By FERRTE, 9 A
FE—MZERPIHN G o XS
pign T HEA i p AR, HATH SR
TR UG Pointo

ZROI R T2 AR RS e 4L
IS4 E BRI, N it
A (Ao ”&“r”> E59
T3 AT LAASE FH A4 38 R 4K
(BySphericalCoordinates) @Bk _E
Y K Pointo

The simplest geometrical object in the Dynamo standard
geometry library is a point. All geometry is created using special
functions called constructors, which each return a new instance
of that particular geometry type. In Dynamo, constructors begin
with the name of the object’s type, in this case Point, followed by
the method of construction. To create a three dimensional point
specified by X, y, and z Cartesian coordinates, use the
ByCoordinates constructor:

// create a point with the following x, y, and z
// coordinates:

X = 10;

y = 2.5;

zZ = -6;

p = Point.ByCoordinates(x, y, z);

Constructors in Dynamo are typically designated with the “By
prefix, and invoking these functions returns a newly created
object of that type. This newly created object is stored in the
variable named on the left side of the equal sign, and any use of
that same original Point.

Most objects have many different constructors, and we can use
the BySphericalCoordinates constructor to create a point lying
on a sphere, specified by the sphere’s radius, a first rotation
angle, and a second rotation angle (specified in degrees):

// create a point on a sphere with the following radius,
// theta, and phi rotation angles (specified in degrees)
radius = 5;

theta = 75.5;

phi = 120.3;

cs = CoordinateSystem.Identity();

p = Point.BySphericalCoordinates(cs, radius, theta,
phi);

Point (s) BEREHI T HHE B = 4EBE AT L

A olnsk. Fefi1ar LAE A Points can be used to construct higher dimensional geometry
ByStartPointEndPointf4i& PR ECK G PN such as lines. We can use the ByStartPointEndPoint
R AR EZN S constructor to create a Line object between two points:

// create two points:
pl = Point.ByCoordinates(3, 10, 2);
p2 = Point.ByCoordinates(-15, 7, 0.5);

// construct a line between pl and p2
- 1 = Line.ByStartPointEndPoint(pl, p2);

A, LineZAT U] T-H4 3t S e 2k 2 Similarly, lines can be used to create higher dimensional surface

LR “m”, BlanfE HLofe (X : . :
FE) MRS BRAL, A2 2 il 2 geometry, for instance using the Loft constructor, which takes a

g series of lines or curves and interpolates a surface between
SRS o P

// create points:
pl = Point.ByCoordinates(3, 10, 2);
p2 = Point.ByCoordinates(-15, 7, 0.5);

p3 = Point.ByCoordinates(5, -3, 5);
p4 = Point.ByCoordinates(-5, -6, 2);

p5 = Point.ByCoordinates(9, -10, -2);
p6 = Point.ByCoordinates(-11, -12, -4);

// create lines:

11 = Line.ByStartPointEndPoint(pl, p2);
12 = Line.ByStartPointEndPoint(p3, p4);
13 = Line.ByStartPointEndPoint(p5, p6);

// loft between cross section lines:
surf = Surface.ByLoft({11, 12, 13});

T AT DA TR S B e AR Y AT : : : _
(LA, BT o2 S B B K Surfaces too can be used to create higher dimensional solid

. e AHmhEE. L geometry, for instance by thickening the surface by a specified
S HEET AR Bkt distance. Many objects have functions attached to them, called

SHATS . Fra JUAk s 7765 methods, allowing the programmer to perform commands on that

FEFRfels , mikss & k4r) particular object. Methods common to all pieces of geometry

Bl et LR, “Ii” A—1 include Translate and Rotate, which respectively translate

Thichken /7%, ¥ A ERIK (move) and rotate the geometry by a specified amount. Surfaces

JE T RHTH R . have a Thicken method, which take a single input, a number
specifying the new thickness of the surface.

pl = Point.ByCoordinates(3, 10, 2);
p2 = Point.ByCoordinates(-15, 7, 0.5);

p3 = Point.ByCoordinates(5, -3, 5);
p4 = Point.ByCoordinates(-5, -6, 2);

11 = Line.ByStartPointEndPoint(pl, p2);
12 = Line.ByStartPointEndPoint(p3, p4);

surf = Surface.ByLoft({11, 12});

// true indicates to thicken both sides of the Surface:
solid = surf.Thicken(4.75, true);

AN N B . . .
Intersectionfii 2 Al MM S ZERT G 42 H Intersection commands can extract lower dimensional

(RAEJ LI IR o 252 UIIRAR LA (R E geometry from higher dimensional objects. This extracted lower

I AN R AL LR, £~ Jinensi . . N
AAREHS (Cydlic) b L6 dimensional geometry can form the basis for higher dimensional

i lic process of geometrical creation, extraction,
b g i e geometry, in a cyc

%{ljjgﬁﬁi%Qgiggmgf’ and recreation. In this example, we use the generated Solid to
W T Seflg “mhsk” . ’ create a Surface, and use the Surface to create a Curve.

pl = Point.ByCoordinates(3, 10, 2);
p2 = Point.ByCoordinates(-15, 7, 0.5);

p3 = Point.ByCoordinates(5, -3, 5);
p4 = Point.ByCoordinates(-5, -6, 2);

11 = Line.ByStartPointEndPoint(pl, p2);
12 = Line.ByStartPointEndPoint(p3, p4);

surf = Surface.ByLoft({11, 12});

solid = surf.Thicken(4.75, true);

p = Plane.ByOriginNormal(Point.ByCoordinates(2, 0, 0),
Vector.ByCoordinates(1, 1, 1));

int_surf = solid.Intersect(p);
int_line = int_surf.Intersect(Plane.ByOriginNormal(

Point.ByCoordinates(@, 0, 90),
Vector.ByCoordinates(1, 0, 0)));

3: Geometric Primitives s&iim

DynamoREfH G # R 2% LT FE While Dynamo is capable of creating a variety of complex
F {55 2R LT S TCTE AT T B y P J Y b

N T N e geometric forms., simple geomgtric pr.imitives form the packbo.ne

BT, B R DTG A of any computational design: either directly expressed in the final

RS 2L LA designed form, or used as scaffolding off of which more complex
geometry is generated.

BN TR LA While not strictly a piece of geometry, the CoordinateSystem is

; =]
?gﬁ%oggnatﬁ}fémmjg@ IXLT{;\% an important tool for constructing geometry. A CoordinateSystem
EEE?EE/EE}MWQIK%% &Et}%% object keeps track of both position and geometric transformations

BRI such as rotation, sheer, and scaling.

— A~ 1 . '\
%@;O . 'O)Coorg%%%sgem%ﬁ?%ﬁf Creating a CoordinateSystem centered at a point with x = 0, y =

B F dentify M 0_, z=0, W|th no rotgtlons, scallr?g, or sheerlng. transformations,
F7 R simply requires calling the Identity constructor:

// create a CoordinateSystem at x =0, y =0, z = 0,
// no rotations, scaling, or sheering transformations

cs = CoordinateSystem.Identity();

CoordinateSystems with geometric transformations are beyond
B SRCoordinateSystems) LI 25 8 i the scope of this chapter, though another constructor allows you
ANEEVERE, AR — MRS Rk to create a coordinate system at a specific point,

G — N EETRE SRR AR, R CoordinateSystem.ByOriginVectors:
CoordinateSystem.ByOriginVectors

// create a CoordinateSystem at a specific location,

Li // no rotations, scaling, or sheering transformations
X_pos = 3.6;
y_pos = 9.4;
z_pos = 13.0;

origin = Point.ByCoordinates(x_pos, y_pos, z_pos);
identity = CoordinateSystem.Identity();

< cs = CoordinateSystem.ByOriginVectors(origin,
LZ‘ identity.XAxis, identity.YAxis, identity.zZAxis);

« = =N f — Iy A . . ey . . .
A R R UTETT, BIGR 1he simplest geometric primitive is a Point, representing a zero-

R B AT B AR . : L : i '
%%igiggiﬁgg %2;@%’4‘ dimensional location in three-dimensional space. As mentioned
IRERAE AT “\ earlier there are several different ways to create a pointin a

B i Point: Point.ByCoordinates{#i _ .))
P E s ye ARk A — particular coordinate system: Point.ByCoordinates creates a

Ny

Point.ByCartesianCoordinates$i 1]
ZREMIxs yv 280K, FERDENAE
PR AR PORATE 15
Point.ByCylindrical Coordinates{s J
P e AR B O A T
AL
Point.BySpherical Coordinates{t H
SRR A T A1) L B v T 35K

NI NP
T REIR T AR R AR AR
ZH A #E S Point.

A E4EE H Dynamo B A& TT
B, AR R (R HTE R
O o I AP A
{ii F Line. ByStartPointEndPoint 14 i& k]
BT — A E L, sl
B— ARG 7 RAZT R L
KE, fiiH
Line.ByStartPointDirectionLength >k {2
I EL.

point with specified x, y, and z coordinates;
Point.ByCartesianCoordinates creates a point with a specified
X, Y, and z coordinates in a specific coordinate system;
Point.ByCylindricalCoordinates creates a point lying on a
cylinder with radius, rotation angle, and height; and
Point.BySphericalCoordinates creates a point lying on a
sphere with radius and two rotation angle.

This example shows points created at various coordinate
systems:

// create a point with x, y, and z coordinates

X_pos = 1;
y_pos = 2;
Z_pos = 3;

pCoord = Point.ByCoordinates(x_pos, y_pos, z_pos);

// create a point in a specific coordinate system
cs = CoordinateSystem.Identity();
pCoordSystem = Point.ByCartesianCoordinates(cs, x_pos,

y_pos, z_pos);

// create a point on a cylinder with the following
// radius and height

radius = 5;

height = 15;

theta = 75.5;

pCyl = Point.ByCylindricalCoordinates(cs, radius, theta,
height);

// create a point on a sphere with radius and two angles
phi = 120.3;

pSphere = Point.BySphericalCoordinates(cs, radius,
theta, phi);

The next higher dimensional Dynamo primitive is a line segment,
representing an infinite number of points between two end points.
Lines can be created by explicitly stating the two boundary points
with the constructor Line.ByStartPointEndPoint, or by
specifying a start point, direction, and length in that direction,
Line.ByStartPointDirectionLength.

Point.ByCoordinates(-2, -5, -10);
Point.ByCoordinates(6, 8, 10);

pl
p2

// a line segment between two points

- ,// 12pts = Line.ByStartPointEndPoint(pl, p2);
L/ A
=X
5 // a line segment at pl in direction 1, 1, 1 with
// length 10
/ /,// 1Dir = Line.ByStartPointDirectionLength(p1l,
f://” Vector.ByCoordinates(1, 1, 1), 10);

I)ynanu)qjﬂéﬂ%jLﬁﬂEﬂjﬁﬁqgizﬁgﬁiﬁﬁq . . .
Sofents s KTk, (5 Dynamo has objects representing the most basic types of
Cuboid.ByLengths@##; [F4, {iff] ~geometric primitives in three dimensions: Cuboids, created with
Cone.ByPointsRadius Cuboid.ByLengths; Cones, created with Cone.ByPointsRadius
Cone.ByPointsRadiifl] & ; [Af£/&, ffi and Cone.ByPointsRadii; Cylinders, created with

A Cylinder.ByRadiusHeight@I#; X cylinder.ByRadiusHeight; and Spheres, created with
gg, {8 H Sphere. ByCenterPointRadiusfl!] Sphere.ByCenterPointRadius.

// create a cuboid with specified lengths
cs = CoordinateSystem.Identity();

cub = Cuboid.BylLengths(cs, 5, 15, 2);

// create several cones
pl = Point.ByCoordinates(@, 0, 10);

p2 = Point.ByCoordinates(o, 0, 20);
p3 = Point.ByCoordinates(@, 0, 30);
conel = Cone.ByPointsRadii(pl, p2, 10, 6);
cone2 = Cone.ByPointsRadii(p2, p3, 6, 9);

// make a cylinder
cylCS = cs.Translate(10, 9, 0);

cyl = Cylinder.ByRadiusHeight(cylCS, 3, 10);

// make a sphere
centerP = Point.ByCoordinates(-10, -10, 0);

sph = Sphere.ByCenterPointRadius(centerP, 5);

4: VVector Math

LES N

S, SR AR LT
AEH G ENIEA, &Rl
MRS e AL T I0A T LRTA Y
HMERL. R EAE—F) L& 28
25t UART A B8 J TR B A, S 1)
A I = AE 2])T A o 2 I MR
s,

Hifp AR, —PMAasEARE 1=
A E, EE A
M (0,0,0) BIHALERT— ko
AJ LA H ByCoordinates 418 PR,

TN BB R R R

x, y, 2REIERE. HER, K
XS EAGE UM RN SR, HA
& ﬁfﬂfbDynamoﬁ H™H. FRIM,

Hr OB B B R AR B RERS AT HY
FEFERI SN

> >

1.006000 2.080208 3.0000080

FARK R ENL T —HBCA R, R
FEZ 23 BIN P TI0 . 3k. DA
@%%ﬁ%,ﬁ@ﬁ—%ﬁmi@@
S

RAg B NE SN RE 52

L, VWD RmFAmER “§ikiEE
iR B, ER LAE SO i R Ak
R (EIEESIEHE AL .
@Emﬁﬁ%ﬁﬁ#ﬁﬁ%ﬁéﬁ,mﬁ
AT

Y

Objects in computational designs are rarely created explicitly in
their final position and form, and are most often translated,
rotated, and otherwise positioned based off of existing geometry.
Vector math serves as a kind-of geometric scaffolding to give
direction and orientation to geometry, as well as to conceptualize
movements through 3D space without visual representation.

At its most basic, a vector represents a position in 3D space, and
is often times thought of as the endpoint of an arrow from the
position (0, 0, 0) to that position. Vectors can be created with the
ByCoordinates constructor, taking the X, y, and z position of the
newly created Vector object. Note that Vector objects are not
geometric objects, and don’t appear in the Dynamo window.
However, information about a newly created or modified vector
can be printed in the console window:

// construct a Vector object
v = Vector.ByCoordinates(1l, 2, 3);

S=Vv.X 4+ " " H V.Y + "4V

A set of mathematical operations are defined on Vector objects,
allowing you to add, subtract, multiply, and otherwise move
objects in 3D space as you would move real numbers in 1D
space on a number line.

Vector addition is defined as the sum of the components of two
vectors, and can be thought of as the resulting vector if the two
component vector arrows are placed “tip to tail.” Vector addition
is performed with the Add method, and is represented by the
diagram on the left.

a
b

Vector.ByCoordinates(5, 5, 9);
Vector.ByCoordinates(4, 1, 0);

// c has value x =9, y =6, z =0
c = a.Add(b);

es(1, 2, 3); =

j1alto 1.0

Similarly, two Vector objects can be subtracted from each other
with the Subtract method. Vector subtraction can be thought of
as the direction from first vector to the second vector.

Q
1}

Vector.ByCoordinates(5, 5, 9);
Vector.ByCoordinates(4, 1, 9);

(on
I

// c has value x =1, y =4, z =0

c = a.Subtract(b);
[ERE, PO RTZAT LA 58 B Subtract T AT IR IE B . R
ﬂTu%Mﬁ%—A%gﬁ£ﬁﬁ%EMﬁﬁ(ﬁ%m,m%ﬁ%
—NREHEL, SRS KAL)

Vector multiplication can be thought of as moving the endpoint of
a vector in its own direction by a given scale factor.

RN WIS 4 AR 7, W AR) B AR i
o
a = Vector.ByCoordinates(4, 4, 0);

// ¢ has value x = 20, y = 20, z =0

c = a.Scale(5);
TR, TR AR RIS . XA S 5B, o
R E AL, WU R SIS T 1.

Often it's desired when scaling a vector to have the resulting
vector’s length exactly equal to the scaled amount. This is easily
achieved by first normalizing a vector, in other words setting the
vector’s length exactly equal to one.

a = Vector.ByCoordinates(1, 2, 3);
a_len = a.Length;

// set the a's length equal to 1.0
b = a.Normalized();
c = b.Scale(5);

// len is equal to 5
len = c.Length;

cﬁﬁ%ﬁﬁ(u3)ﬁﬂmﬁﬁ (BRI E IR 5515,

c still points in the same direction as a (1, 2, 3), though now it has
length exactly equal to 5.

TR BRI RN TTE, H
S—HHr BEAHEAR, &YX
BRI SR XBUE DR R IERS
(90") AR R B, b
Sy R B R, T 25 E 1)
REANFTFEIER . YHEMH
Cross J7 o

AN, RPURREA R AP RO R
e P I B B — 4S8
(AP REXNR) , HEUk

WBAY KB R 2 [A

JEo R AT R: W

N RAEH R0 HLAL 4 2
o KBUEHEME DT o

> >

-7.000

Two additional methods exist in vector math which don’t have
clear parallels with 1D math, the cross product and dot product.
The cross product is a means of generating a Vector which is
orthogonal (at 90 degrees to) to two existing Vectors. For
example, the cross product of the x and y axes is the z axis,
though the two input Vectors don’t need to be orthogonal to each
other. A cross product vector is calculated with the Cross
method.

Q
I

Vector.ByCoordinates(1, 0, 1);
Vector.ByCoordinates(0, 1, 1);

(on
1}

// c has value x = -1, y = -1, z =1
¢ = a.Cross(b);

An additional, though somewhat more advanced function of
vector math is the dot product. The dot product between two
vectors is a real number (not a Vector object) that relates to, but
is not exactly, the angle between two vectors. One useful
properties of the dot product is that the dot product between two
vectors will be O if and only if they are perpendicular. The dot
product is calculated with the Dot method.

a
b

Vector.ByCoordinates(1, 2, 1);
Vector.ByCoordinates(5, -8, 4);

// d has value -7
d = a.Dot(b);

5: Range Expressions iH&isst

JLFRr RO M B EE TR,

SAREREL L VN g N A Sk FapcdE
B, DARCHABERAE, XAERIA o
AEHFERT A . YEHEIFRIAA 4 Dynamo
REFF SRt T — MO IR RIE— M

1E, RIERIZE R BB P A

(..), XAT AR 5 B R E - 1A
2T

Plan: BRI A 22 & B
f,%g%%@%%@%ﬁ?i%g
B YK QIS UF(Es

N ; Wwatch A

= =

T BB, AR ST
EE B B OFEA A R, [
BE, RIS AR B A A 2
5, BB LR B 2T .

it FRAIZA Line ME AL N —
JEFIE, Dynamoil Bl—HHE 2k,

6

YR FIA S BN LA SO (I e 3
A EArS PO ST Ay & e AE| S
WA, HEANEELPRETT. Eit
I — A5 () ZATE I RIE,
YRAT LAFE e TE R 1A TRl 35 MH .
XH D BMIEBEER S 12E, Ll
yap LRI SR

Almost every design involves repetitive elements, and explicitly
typing out the names and constructors of every Point, Line, and
other primitives in a script would be prohibitively time consuming.
Range expressions give a Dynamo programmer the means to
express sets of values as parameters on either side of two dots
(. .), generating intermediate numbers between these two
extremes.

For instance, while we have seen variables containing a single
number, it is possible with range expressions to have variables
which contain a set of numbers. The simplest range expression
fills in the whole number increments between the range start and
end.

In previous examples, if a single number is passed in as the
argument of a function, it would produce a single result. Similarly,
if a range of values is passed in as the argument of a function, a
range of values is returned.

For instance, if we pass a range of values into the Line
constructor, Dynamo returns a range of lines.

X_pos = 1..6;

y_pos = 5;

z_pos = 1;

lines = Line.ByStartPointEndPoint(Point.ByCoordinates(©,

0, 90), Point.ByCoordinates(x_pos, y_pos, z_pos));

By default range expressions fill in the range between numbers
incrementing by whole digit numbers, which can be useful for a
quick topological sketch, but are less appropriate for actual
designs. By adding a second ellipsis (. .) to the range
expression, you can specify the amount the range expression
increments between values. Here we want all the numbers
between 0 and 1, incrementing by 0.1:

