V

v

I
-
=
w
~+

F® 909009090003
W~ R W N

.55555555555556
.33333333333333
L11111111111111
.83888888888889
4.66666666666667
5.44444444444444
6.22222222222222
7

WwWwN R e®

TITITITITITTTT8

a =20..1..0.1;
YRS E VLA AR B S I A BIBE A ST
JEHVERIME. Fln, mRIEAIEE— 02 7B B A, HEah
0.75, A RCHIEUEINT ;

One problem that can arise when specifying the increment
between range expression boundaries is that the numbers
generated will not always fall on the final range value. For
instance, if we create a range expression between 0 and 7,
incrementing by 0.75, the following values are generated:

= 0..7..0.75;

S B A T s, A R A R AT A
FAAS, Dynam A R0RRE R SR T (R ES S) 5.)RR
I 50 00 AR A = BT AR M (A2) S AR -

If a design requires a generated range expression to end
precisely on the maximum range expression value, Dynamo can
approximate an increment, coming as close as possible while still
maintaining an equal distribution of numbers between the range
boundaries. This is done with the approximate sign (~) before the
third parameter:

// DesignScript will increment by ©.777 not 0.75
a=290..7..~0.75;

LR, WARIRAELEDynamo WARE XA TRIEAIITR, %7 #
VERF RVF ISR E -

However, if you want to Dynamo to interpolate between ranges
with a discrete number of elements, the # operator allows you to
specify this:

// Interpolate between @ and 7 such that
// “a” will contain 9 elements
a =0..7..49;

6: Collections & %4

SRR, B4, . : : :
Bt —AEOSTTREE A EIE0, {1 Collections are special types of variables which hold sets of

2,3,4,5,6,7,8,9, 10}; HAcig/EgE values. Forinstance, a collection might contain the values 1 to
2R LA, {Surface, Point, Line, 10, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, assorted geometry
Point}; HZEASEAHETI{1,2,3}, from the result of an Intersection operation, {Surface, Point,
{4, 5}, 6}. Line, Point}, or even a set of collections themselves, { {1, 2,
3}, {4, 5}, 6}.
A ARG By B i BT FUR VB A
(BF: 57afHEEIESL) o JEEFA One of the easier ways to generate a collection is with range
IR TS, (BRI expressions (see: Range Expressions). Range expressions by
NG N\ B R KL, #4918 default generate collections of numbers, though if these
MEES collections are passed into functions or constructors, collections
of objects are returned.

// use a range expression to generate a collection of
// numbers
nums = 0..10..0.75;

// use the collection of numbers to generate a
// collection of Points
points = Point.ByCoordinates(nums, @, 0);

B FGE AT Y, A0 When range expressions aren’t appropriate, collections can be

DS, HTFIETE. TS : :
e QNN Iy fill h values. Th
FRAERE (| I T B 1 P B 7 created empty and manually filled with values e square

SRS AT A bracket operator ([]) is used to access members inside of a
A B R R RS collection. The square brackets are written after the variable’s
W ES. T EJERE, &8/ Mo name, with the number of the individual collection member
JE, XEWEESHE D ICRM contained inside. This number is called the collection member’s
Hcollection[0]V7[R], 1EEFA “E index. For historical reasons, indexing starts at 0, meaning the
57 o W EEIZE RG] SN, K first element of a collection is accessed with: collection[0],
Vi IIBEJE R, TN and is often called the “zeroth” number. Subsequent members

are accessed by increasing the index by one, for example:

// a collection of numbers
nums = 0..10..0.75;

had // create a single point with the 6™ element of the
// collection
points = Point.ByCoordinates(nums[5], @, 9);

GEEES fE, [HHFEFEPZ S #4457 The individual members of a collection can be modified using the
A DME UG M L same index operator after the collection has been created:

FEAWATLMENZRSIE, N—
/\%A#jﬂ%%&—/\?%/\

i, %£41{1,3,5,7}

AR

X%M—A%
/‘EPTE'EX#;& 4y 6+ 8PILE
(i, ZE5EMOFFERIT)

> >
=] List
6
8
10
12
I)ynanna%Eﬁt%?FHLJ<Q5EF¢£¥§§
o IZ[;(%(COUH'(J—ﬁ//gl 1LJ\><
%A%ﬁ@lﬁl R E T Z

%o

// generate a collection of numbers
a =0..6;

// change several of the elements of a collection

a[2] = 1ee; SLPr b, ATLARIRIKEES D AORE]E—

a[5] = 200; MEG. U SERAER(ERESHHIGE
ESE g ntellfe St ReF TN S

In fact, an entire collection can be created by explicitly setting
every member of the collection individually. Explicit collections
are created with the curly brace operator ({}) wrapping the
collection’s starting values, or left empty to create an empty
collection:

// create a collection explicitly
= { 45, 67, 22 };

// create an empty collection

b ={};

// change several of the elements of a collection
b[o] 45;
b[1] = 67;
b[2] = 22;

Collections can also be used as the indexes to generate new sub
collections from a collection. For instance, a collection containing
the numbers {1, 3, 5, 7}, when used as the index of a
collection, would extract the 2™, 4™, 6™, and 8" elements from a
collection (remember that indices start at 0):

indices = {1, 3, 5, 7};

// create a collection via a collection of indices
b = a[indices];

Dynamo contains utility functions to help manage collections. The
Count function, as the name implies, counts a collection and
returns the number of elements it contains.

// create a collection with 10 elements
a =1..10;

num_elements = Count(a);

10.000

7: Functions

70 EREL

FIHATAR, fEDesignScript®, JLF-fir
AR REFRI RIS AR FIE AT 2
— A A R A B
RO AP

T, KA HE R . fE
DesignScript, 4 sREHA I, K
AT, I EHLAL P A AEA5R 5] 4
o HiEKEPoint. ByCoordinates(x :
double, y : double, z : double) & A =M A
B, AFJFIRIE—Pointh o IEAIK
%ﬁﬁ?%ﬁ,m%ﬁmm%ﬁﬁﬁ%
PLEEARTH CRY R AR TIRE. PREE
AR — Ao EHRE D)
REALFRACAG T, WA fh i HoAa Ak
KAe (RED T hde, DMEIRE
T2 S 1 P e

B, — RSy RS A — 3L
Baellf O P RS &

FE— D1 _EBIER i 22 TR 5 AT T
SR LTS o R FA TR EIRA T
TR AL, ARBUTIREEm, #
MMRBUR I HIN AL RGTR 5E 4
AUISERR B T HZ IO A 2
PRECH (AR P ST 2 AT AR Y T RE R
FE FUERECE AR AL (5] R
7)o

Almost all the functionality demonstrated in DesignScript so far is
expressed through functions. You can tell a command is a
function when it contains a keyword suffixed by a parenthesis
containing various inputs. When a function is called in
DesignScript, a large amount of code is executed, processing the
inputs and returning a result. The constructor function
Point.ByCoordinates(x : double, y : double, z : double)
takes three inputs, processes them, and returns a Point object.
Like most programming languages, DesignScript gives
programmers the ability to create their own functions. Functions
are a crucial part of effective scripts: the process of taking blocks
of code with specific functionality, wrapping them in a clear
description of inputs and outputs adds both legibility to your code
and makes it easier to modify and reuse.

Suppose a programmer had written a script to create a diagonal
bracing on a surface:

Point.ByCoordinates(9, 0, 9);
Point.ByCoordinates(10, 0, 0);

pl
p2

1 = Line.ByStartPointEndPoint(p1, p2);

// extrude a line vertically to create a surface
surf = l.Extrude(Vector.ByCoordinates(0, 0,

1), 8);

// Extract the corner points of the surface
corner_1 = surf.PointAtParameter(9, 0);
corner_2 = surf.PointAtParameter(1l, 0);
corner_3 = surf.PointAtParameter(1, 1);
corner_4 = surf.PointAtParameter(0, 1);

// connect opposite corner points to create diagonals
diag_1 = Line.ByStartPointEndPoint(corner_1, corner_3);
diag 2 = Line.ByStartPointEndPoint(corner_2, corner_4);

This simple act of creating diagonals over a surface nevertheless
takes several lines of code. If we wanted to find the diagonals of
hundreds, if not thousands of surfaces, a system of individually
extracting corner points and drawing diagonals would be
completely impractical. Creating a function to extract the

HITAE R T RIS IR 5 def, AN
FETT A5 PR A S BB FOR B bR
o RBAMEERAAEIT TN} 1E
DesignScriptH?, BRELVAATR A —MH,
25 KA AR Hrreturn W E R SEBLIR 9]
&, Bian:

NHEPREE 2, IR EZE2

{EXIERS

BRECN R —ERENTASE, —1
AR [26 4 53 K Y i SRR A T P
NG

FEBI A BT A LA U i
BRELHT, TETER R AER]
—fE, T EATRI AL A K
PI/NGGe N T ARDRIXAN AL, 3AT]
A EMBP I RERAEATE 5},
KO E—EREXT 5. fill,
gﬁﬁéﬁﬁﬁﬁﬁﬁmﬁﬁﬁ

=

20.000

>

1.618

diagonals from a surface allows a programmer to apply the
functionality of several lines of code to any number of base
inputs.

Functions are created by writing the def keyword, followed by the
function name, and a list of function inputs, called arguments, in
parenthesis. The code which the function contains is enclosed
inside curly braces: {}. In DesignScript, functions must return a
value, indicated by “assigning” a value to the return keyword
variable. E.g.

def functionName(argumentl, argument2, etc, etc, . . .)
{

/I code goes here

return = returnVariable;

This function takes a single argument and returns that argument
multiplied by 2:

def getTimesTwo(arg)
{

return = arg * 2;

}

times_two = getTimesTwo(10);

Functions do not necessarily need to take arguments. A simple
function to return the golden ratio looks like this:

def getGoldenRatio()

{
return = 1.61803399;

}

gr = getGoldenRatio();

Before we create a function to wrap our diagonal code, note that
functions can only return a single value, yet our diagonal code
generates two lines. To get around this issue, we can wrap two
objects in curly braces, {}, creating a single collection object. For
instance, here is a simple function which returns two values:

Watch ?ef returnTwoNumbers ()

= = return = {1, 2};
}
El List
1 two_nums = returnTwoNumbers();
2

QAR R AL P BN 2 U, . . .
TR ATTT LAZE— 23T 0 If we wrap the diagonal code in a function, we can create
% Fn— T AR AT T . diagonals over a series of surfaces, for instance the faces of a

cuboid.

def makeDiagonal(surface)

{

corner_1
corner_2
corner_3
corner_4

surface.PointAtParameter(0, 0);
surface.PointAtParameter(1, 9);
surface.PointAtParameter(1, 1);
surface.PointAtParameter(0, 1);

diag 1 = Line.ByStartPointEndPoint(corner_1,
corner_3);

diag 2 = Line.ByStartPointEndPoint(corner_2,
corner_4);

return = {diag 1, diag 2};

¢ = Cuboid.ByLengths(CoordinateSystem.Identity(),
10, 20, 30);

diags = makeDiagonal(c.Faces.SurfaceGeometry());

8: Math 8: v

DynamobrifE % A1 & 50274 25 %k The Dynamo standard library contains an assortment of
HiBhdn 5 BRI E R . 52K % mathematical functions to assist writing algorithms and
LA A 24 2= [FAIMath(EA RIS, 4T manipulating data. Math functions are prefixed with the Math
jﬁ@ﬁ?ﬁ?@ﬁ’ T BAERAETI namespace, requiring you to append functions with “Math.” in
ath.
@@éﬁﬂoor,(ZdhngﬁﬂRoundjfi?ﬁk{ﬁ
FH AT PR 25 SRR B 17 e B BTN AL
fH. BIRX =P IREHES — 1 . -
VEABVERH A . Floor& il — > 2 The functlons_ Floor_‘, Ceiling, and Rpund a||0V\{ you to _convert
I F 4 NHIHEAL, CeilingiR[H]—> 44 between floating point numbers and integers with predictable
JEIh) Fa NIE%L) RoundiR [Hl#x#: outcomes. All three functions take a single floating point number
T as input, though Floor returns an integer by always rounding
down, Ceiling returns an integer by always rounding up, and

Round rounds to the closest integer

order to use them.

Vv
A"

0.000

val = 0.5;

Vv
A"

.F

Math.Floor(val);
Math.Ceiling(val);

r = Math.Round(val);

r2 = Math.Round(val + 0.001);

1.000

).001); | =

0.000

K—J/E N

Vv
A"

Dynamo also contains a standard set of trigonometric functions
to calculate the sine, cosine, tangent, arcsine, arccosine, and
Dynamod® & —4HbRIERT — 1K arctangent of angles, with the Sin, Cos, Tan, Asin, Acos, and

5, 2nlfEH Atan functions respectively.

Sinv Coss Tans Asins AcosflAtan

PRECKITEIFZ. &% 1EY).)& While a comprehensive description of trigonometry is beyond the
TE5Z S AR Y scope of this manual, the sine and cosine functions do frequently
SR =AW TABIYE occur in computational designs due their ability to trace out

2 ETIE%%[]%%%ﬁ%i@ﬁl positions on a circle with radius 1. By inputting an increasing
géiiﬁ%ﬁﬁi@é%{%%i degree angle, often labeled theta, into Cos for the x position, and
AR, EEPRICN 0, Cosf FEx
AEFR, Sin B x%y/ﬂéﬁ?, Kt B H _ERY
L NIER

1.000

Sin for the y position, the positions on a circle are calculated:

Code Block

5.000

num_pts = 20;

// get degree values from © to 360
theta = 0..360..#num_pts;

p = Point.ByCoordinates(Math.Cos(theta),
Math.Sin(theta), 9);

AR B A R BRI R A — i 2 BURIRAVERF . BUR
BAERE, IR 53RN, IR D REBOHR IS IR 8. filln: 7B
Pl2, BiA3, 281 (%R2X3+1=7) « 7BUERIG, H1. BT
I, 6REMEM2YYEISE S, litbe H 2R E 0. NI B4k A
AR B ESE R Z5 2R

A related math concept not strictly part of the Math standard
library is the modulus operator. The modulus operator, indicated
by a percent (%) sign, returns the remainder from a division
between two integer numbers. For instance, 7 divided by 2 is 3
with 1 left over (eg 2 x 3 + 1 = 7). The modulus between 7 and 2
therefore is 1. On the other hand, 2 divides evenly into 6, and
therefore the modulus between 6 and 2 is 0. The following
example illustrates the result of various modulus operations.

7% 2;
6 % 2;
10 % 3;
19 % 7;

o MiZ: P AHZRIR b
9: Curves: Interpreted and Control Points

EDynamo TR A E B
h2k: M sEE — e

%, Dynamofa e th— 2N
RHREE, BCE TR E A A A
AUESRA 2. IR RITE Y
PRAVES Bl — A< 2R A UIE [
I, AR 2R AR A IR . 1
R E R R R 2 B B E
LB — R YN AR A BT
2o MR E R R R e AT
B PO RDET BERE A, FE-F
T A T B 2t R AR
i FINurbsCurve. ByPoints 3 {{# 1]
%gé%@ﬁ%%$%ﬁﬁ%ﬁk
FHHZ

JIT A R 270 1l A A U

52, HEIHRTHEGTHRE 1, 4
KT Efa— s — DA 2%0]
HTAIEEE A Z. Dynamot4 H 3
g B, i DORTRE— AT 6
RS MR R

There are two fundamental ways to create free-form curves in
Dynamao: specifying a collection of Points and having Dynamo
interpret a smooth curve between them, or a more low-level
method by specifying the underlying control points of a curve of a
certain degree. Interpreted curves are useful when a designer
knows exactly the form a line should take, or if the design has
specific constraints for where the curve can and cannot pass
through. Curves specified via control points are in essence a
series of straight line segments which an algorithm smooths into
a final curve form. Specifying a curve via control points can be
useful for explorations of curve forms with varying degrees of
smoothing, or when a smooth continuity between curve
segments is required.

To create an interpreted curve, simply pass in a collection of
Points to the NurbsCurve.ByPoints method.

num_pts = 6;
s = Math.Sin(@..360..#num_pts) * 4;
pts = Point.ByCoordinates(1..30..#num_pts, s, 9);

int_curve = NurbsCurve.ByPoints(pts);

The generated curve intersects each of the input points,
beginning and ending at the first and last point in the collection,
respectively. An optional periodic parameter can be used to
create a periodic curve which is closed. Dynamo will
automatically fill in the missing segment, so a duplicate end point
(identical to the start point) isn’t needed.

pts = Point.ByCoordinates(Math.Cos(0..350..#10),
Math.Sin(@..350..#10), 0);

// create an closed curve
crv = NurbsCurve.ByPoints(pts, true);

// the same curve, if left open:
crv2 = NurbsCurve.ByPoints(pts.Translate(5, 0, 9),
false);

A= BN urbsCurves 2 LAR—Ff 7 42 : .
i, T B — A SRR i 2 1 A NurbsCurves are generated in much the same way, with input

)\,5 5 — A BB 22 1 e points represent the endpoints of a straight line segment, and a

i %ddjﬁﬂfo it B 1 2k o second parameter specifying the amount and type of smoothing
W, BRI, the curve undergoes, called the degree.* A curve with degree 1

has no smoothing; it is a polyline.

num_pts = 6;

pts = Point.ByCoordinates(1..30..#num_pts,
Math.Sin(@..360. .#num_pts) * 4, 0);

// a B-Spline curve with degree 1 is a polyline
ctrl_curve = NurbsCurve.ByControlPoints(pts, 1);

2 Fy 2
igggaﬂqﬁﬁﬁﬁﬁ A, RS A curve with degree 2 is smoothed such that the curve intersects

and is tangent to the midpoint of the polyline segments:

num_pts = 6;

pts = Point.ByCoordinates(1..30..#num_pts,
Math.Sin(@..360..#num_pts) * 4, 0);

// a B-Spline curve with degree 2 is smooth
ctrl_curve = NurbsCurve.ByControlPoints(pts, 2);

Dynamo S i R 20 AINURBS

i (A5 FHEBIEA ML) , T Dynamo supports NURBS (Non-uniform rational B-spline) curves
EE’JFEEZB%%KHE’JEHFXTHH%%(% up to degree 20, and the following script illustrates the effect

A . . .
LRI : increasing levels of smoothing has on the shape of a curve:

num_pts = 6;

pts = Point.ByCoordinates(1..30..#num_pts,
Math.Sin(@..360..#num_pts) * 4, 0);

def create_curve(pts : Point[], degree : int)

{

return = NurbsCurve.ByControlPoints(pts,
degree);

}

ctrl crvs = create_curve(pts, 1..11);

FEERMR, b i
iy Note that you must have at least one more control point than the

degree of the curve.

e Another benefit of constructing curves by control vertices is the
Irabae, PRUIEAS A 2B 1]

MY &y R m i daT— ability to maintain tangency between individual curve segments.
SR S WS T RS R & This is done by extracting the direction between the last two
W2 T 06 75 5 Y 5 Ta) A [F) SB 52 control points, and continuing this direction with the first two
A NHEPAEIEE TS control points of the following curve. The following example
NURBSHIZE, HENDEHEEL creates two separate NURBS curves which are nevertheless as
R Lk smooth as one curve:

pts_1 = {};

pts_1[@] = Point.ByCoordinates(@, 0, 0);
pts_1[1] = Point.ByCoordinates(1, 1, 0);
pts_1[2] = Point.ByCoordinates(5, 0.2, 9);
pts_1[3] = Point.ByCoordinates(9, -3, 9);
pts_1[4] = Point.ByCoordinates(11, 2, 0);

crv_1 = NurbsCurve.ByControlPoints(pts_1, 3);

pts_2

{};

pts_2[0] = pts_1[4];
end_dir = pts_1[4].Subtract(pts_1[3].AsVector());

pts_2[1] = Point.ByCoordinates(pts_2[0].X + end_dir.X,
pts_2[0].Y + end_dir.Y, pts_2[0].Z + end_dir.Z);

pts_2[2] = Point.ByCoordinates(15, 1, 9);
pts_2[3] = Point.ByCoordinates(18, -2, 0);
pts_2[4] = Point.ByCoordinates(21, 0.5, 90);

crv_2 = NurbsCurve.ByControlPoints(pts_2, 3);

X FUENURBS LR] Biftfiid | 5
PRI EE S WL HA AR

* This is a very simplified description of NURBS curve geometry,
for a more accurate and detailed discussion see Pottmann, et al,
2007, in the references.

10: PR el An At Ar

10: Translation, Rotation, and Other Transformations

HELE JUATRT 52 R LAIE I 5 5 W1 Y

xvoys 2 JEAARROREIEE . ST, B
%W%R@W%@ﬁ%ﬁﬂﬁﬁﬁ%
AT o

(Al LA L AR A2, Il IR E
FY e RIS TR ARG B A

RAEAEDynamo HIPTAXT AT LLid

TEXT G 44 JE W N Translate J7 k%

X5, AHRFE RNV F R E R 2
BE— A B AR bR R T —

Ao BN, FHG— DR G e

45FERT) FRATTFE EH H Transform 77
;@%Ei“&ﬁ TRERE) AR TR 2R Wl e

4505

Certain geometry objects can be created by explicitly stating X, v,
and z coordinates in three-dimensional space. More often,
however, geometry is moved into its final position using
geometric transformations on the object itself or on its underlying
CoordinateSystem.

The simplest geometric transformation is a translation, which
moves an object a specified number of units in the x, y, and z
directions.

// create a point at x =1, y =2, z =3
p = Point.ByCoordinates(1, 2, 3);

// translate the point 10 units in the x direction,
// -20 in y, and 50 in z

// p2’s new position is x = 11, y = -18, z = 53

p2 = p.Translate(10, -20, 50);

While all objects in Dynamo can be translated by appending the
.Translate method to the end of the object’'s name, more
complex transformations require transforming the object from one
underlying CoordinateSystem to a new CoordinateSystem. For
instance, to rotate an object 45 degrees around the x axis, we
would transform the object from its existing CoordinateSystem
with no rotation, to a CoordinateSystem which had been rotated
45 degrees around the x axis with the . Transform method:

cube = Cuboid.BylLengths(CoordinateSystem.Identity(),
10, 10, 10);

new_cs = CoordinateSystem.Identity();

new_cs2 = new_cs.Rotate(Point.ByCoordinates(0, 9),

Vector.ByCoordinates(1,0,0.5), 25);

// get the existing coordinate system of the cube
old_cs = CoordinateSystem.Identity();

cube2 = cube.Transform(old_cs, new_cs2);

B 7oFRS ERe, AR AR LU T4 y . :
WIS . AkbE AT LA Scale /5 B2 3k47 1N @ddition to being translated and rotated, CoordinateSystems

YET - can also be created scaled or sheared. A CoordinateSystem can
be scaled with the .Scale method:

cube = Cuboid.BylLengths(CoordinateSystem.Identity(),
10, 10, 10);

new_cs = CoordinateSystem.Identity();
new_cs2 = new_cs.Scale(20);

old cs = CoordinateSystem.Identity();

cube = cube.Transform(old_cs, new_cs2);

DIAR AR ZR A — A JR AR A Bs 255
AT ARIESE I ROR A A Sheared CoordinateSystems are created by inputting non-
orthogonal vectors into the CoordinateSystem constructor.

new_cs = CoordinateSystem.ByOriginVectors(
Point.ByCoordinates(@, 0, 9),
Vector.ByCoordinates(-1, -1, 1),
Vector.ByCoordinates(-0.4, 0, 9));

old_cs = CoordinateSystem.Identity();

cube = Cuboid.BylLengths(CoordinateSystem.Identity(),
5, 5, 5);

new_curves = cube.Transform(old _cs, new _cs);

AG T ABAR AR TR AT 7% _ _ _ ,
BNE A, B LI AEDynamo 67 Scaling and shearing are comparatively more complex geometric
ANl DI i seas e, MR transformations than rotation and translation, so not every

T REW P ALFR R X Dynamo H1 RS Dynamo object can undergo these transformations. The following
SHE I - table outlines which Dynamo objects can have non-uniformly

scaled CoordinateSystems, and sheared CoordinateSystems.

Non-Uniformly
Class Scaled Sheared
CoordinateSystem | CoordinateSystem
Arc No No
NurbsCurve Yes Yes
NurbsSurface No No
Circle No No
Line Yes Yes
Plane No No
Point Yes Yes
Polygon No No
Solid No No
Surface No No
Text No No

11: A SRR

11: Conditionals and Boolean Logic

I BeiR o B R IIREZ — R FT LA
LT AR XSG TH
B, MRAEXS RAVEEE . ZWFRES 2
I — IO R R RGNS
XFGFEAT R AR TS AT o

BHIEE T HWEA N EMR. 17
BRI E A ER R g5 R AT
RERREER, WA HAL R K
45 RN L e 8 B 7 2 (o FH O 4
%ZUueo Eﬂ$¥, %Eﬁﬁéﬁgﬁj@ﬂ§EQﬁ%
faT BT A F G Foflase o ifTEA]
FVFRFIBE R B AR . AnRE5 R
RHENEE — BT, R
B2 — B AT o

FELAUT R, it a e
—NNEATEA, LA BORA]
BARITH AR

IR SRRSO, WEE ke
BB TH AR R A 2k

One of the most powerful features of a programming language is
the ability to look at the existing objects in a program and vary
the program’s execution according to these objects’ qualities.
Programming languages mediate between examinations of an
object’s qualities and the execution of specific code via a system
called Boolean logic.

Boolean logic examines whether statements are true or false.
Every statement in Boolean logic will be either true or false, there
are no other states; no maybe, possible, or perhaps exist. The
simplest way to indicate that a Boolean statement is true is with
the true keyword. Similarly, the simplest way to indicate a
statement is false is with the false keyword. The if statement
allows you to determine if a statement is true of false: if it is true,
the first part of the code block executes, if it's false, the second
code block executes.

In the following example, the if statement contains a true
Boolean statement, so the first block executes and a Point is
generated:

geometry = [Imperative]

{
if (true)
{
return = Point.ByCoordinates(1, -4, 6);
}
else
{
return = Line.ByStartPointEndPoint(
Point.ByCoordinates(0, 0, 90),
Point.ByCoordinates(10, -4, 6));
}
}

If the contained statement is changed to false, the second code
block executes and a Line is generated:

geometry = [Imperative]
{
~ // change true to false
if (false)
{
return = Point.ByCoordinates(1l, -4, 6);
}
else
{
return = Line.ByStartPointEndPoint(
Point.ByCoordinates(0, @, 90),
Point.ByCoordinates(10, -4, 6));
}
}

Box L BEE A A ZR] Static Boolean statements like these aren't particularly useful; the

Gl ﬂ? I’i %Eﬁ@%%?g%ﬁﬁﬂf@ power of Boolean logic comes from examining the qualities of
gg/jﬁl\ﬂﬁiﬁ%{%ﬁ?f\%fﬁﬁ objects in your script. Boolean logic has six basic operations to

(>), INFEETF(< =), AFoET evaluate values: less than (<), greater than (>), less than or equal
> :’) %%(_ _ K%’gﬂ:(! ;)O (<=), greater than or equal (>=), equal (==), and not equal (!=).

- >

N AR T B R s The following chart outlines the Boolean results

< Returns true if number on left side is less than number on right
side.

> Returns true if number on left side is greater than number on
right side.

<= | Returns true of number on left side is less than or equal to the
number on the right side.*

>= | Returns true of number on the left side is greater than or equal

to the number on the right side.*

Returns true if both numbers are equal*

Returns true if both number are not equal*

CES R T, T

A R I BB A FR A o * see chapter “Number Types” for limitations of testing equality
between two floating point numbers.

XA AR LA L is B ek

IR 1] true BY false: Using one of these six operators on two numbers returns either
true or false:

result = 10 < 30;
True

result = 15 <= 15;
> >
True
> > result = 99 != 99;
False
Htp =AMz B/ H T L Three other Boolean operators exist to compare true and false
B M (&), 30 A statements: and (&&), or (| |), and not (1).
OF
&& Returns true if the values on both sides are true.

[Returns true if either of the values on both sides are true.

! Returns the Boolean opposite

WARWBFE, WHRE] trueo
WRAE— 0 E, R E] trueo

AR [N FH S AIAT 7R 1E
> > result = true && false;
False
result = true || false;
> >
True
= | .
. N result Ifalse;
True

LIS RSB B s Bl -, R iE : : .
ST N Sk A i — £ B 42 - Refactoring the code in the original example demonstrates

different code execution paths based on the changing inputs from
a range expression:

def make_geometry(i)

{
return = [Imperative]
{
// test if the input is divisible
// by either 2 or 3. See "Math"
if (1%2==01]]1i%3-==029)
{
return = Point.ByCoordinates(i, -4, 10);
}
else
{
return = Line.ByStartPointEndPoint(
Point.ByCoordinates(4, 10, 9),
Point.ByCoordinates(i, -4, 10));
}
}
}

g = make_geometry(0..20);

